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ABSTRACT:

Ne investigsted the action with higher order derivatives of classica! figlds
ang the corresconding field equations. The static solutions are due tc the cheice of the
parameters at a constant term and at terms with first and hioher order derivatives
in the Lagrangian, of the Coulomb type, of the Yukawa type or of the type
usually used for quark (confining) interaction in hadrons or the type of potential
barrier allowing tunneling of the particles.

{. INTRODUCTION

Usually Lagrangians are considered which are functions of fields ana their

first derivatives only and which lead to field equations of the type:
%
(D-kZ)A=-j : D)

whereé is the source of the field A, which can (together with j) be & scalar, a
vector or a tensor. Choosing ¥ e 0, A= (CP,0,0,0), and j = (ex3('r’-—r\c),0,0,0)
the solution is the Coulomb potential, while k° ¥ 0 correspohds to meson fields

with 2 mass m = k'. In both cases the solutions have a local cheracter.

*(We shall use in this paper the units in which fi = c = 1).
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.agrangians with higher orde: dJer:vatives were dlscussed ir the literature
{1 -5} mainly as 2 possibility to elimirate infinities appearing in classica! or
quanturn field thecries. The authors of reference (3) concluded, for example, that
when working with Lagrangians which have higher order derivatives the positive
definiteness of the energy and strict causality are difficult, if at all possible, to
achieve. We shall not comment in this letter on the two mentioned very important
pointe of field theory with higher order derivatives.We shall rather present static
solutions of some (inhomogeneous) equations of motion which are partiai differ-
ential equations of higher orders and comment on them.We shall show that for a
specia! choice of parameters in the Lagrange density the static potential rises
with the distance from the source monotonicslly, having the form usually used

for quarks in hadron physics, whiie different choices of the parameters in
Lagrangian density can force the potential to decrease again at large distances
which means that quarks, interacting with such a potential, can tunnel through

the barrier.

2. LAGRANGIAN DENSITIES AND EQUATIONS OF MOTION

we chocse the following action for vector fields:

1= i(Aﬁ‘BvA’b, }’vSSNS e iy A ..)-:lq?‘; (a3
where we have used the notation:
F = A) y =0 i},
A%A Av(A*%y(}/‘ s AL
%oo~4" %yv, % C&va’ % G“O\ ()va :jxva(_)xik ax”h

The Lagrange density is equal to:

g- i 33 A Do O Ny
+ao AFAP i% (33 yA)cbm--bv y)

We can rewrite the Lagranglan in a more compact way as f(ﬂlows
3=do A A" +dA “L (mp¥G Ar’raoA[Atb‘rA[‘%mD % 3 (2a)

2
where D = ‘) ¥ and the coefficients a; and (3i are related to cL.o(].,

9 g;- The numbers N). and Nc determine the highest order derivative of the
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vector field ano the current, respectively.

Defining the gynamics of the flelds by an action princinle
y
(dd'x=0

we obtain the Euler - Lagrange equations of the form:

4 A (N
%—E?-g&-ﬂ 133’4-"5”4(@:?;&')) O

Using the Lagrange density from eq. (2a) one ﬁlains:

[de +oq'1‘_* (=)A= -l g vql] (O™ el .

3. SOLUTIONS FOR SPECIAL CHOICES OF PARAMETERS

i om: chooses N' =1, N, = 0, x, = 0, go"""’ = |, one obtains eq.(l), which
for Q{i = 0, represents the equation o1 motion In electrodynamics, as was
already mentioned, while for d\‘ﬁ 0 the equation for mesons with m 'dl
foliows. In this letter we shall study only the static solutions of the equations
(4a) of a point source = (53('5—'?01,0,0,0). We take therefore AL - (& ,0,0,0)
and we look for the solution of eq.(4a) in the form:

b= m gFme;E:(v-ﬁ.) 4% 1
Inserting§° @ -7 ) = ﬁ? S&'kﬁ'—m e

into eq. (4a), one obt

AN 2 Y
V= Gl ™ 3, A (ke
=

We put the expression (6) into eq. (5) and perform the integration over the
angle cQ, Then it follows that

N
_.i_. 2 .m*—)(‘4)[.p ‘n_L"y'l.j]
7= 212'5 Rk 9 P dot of TG
l.-!

and @ from eq. (5)
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The Cauchy principal value of the integral in eq. (7) converges when (f - i’o,} goes
to zerc as soon as N, >N_- i, ano ol # 0.

To this particular solutlon of the Inhomogeneous eq. (4a) @ generai solution of the
homogeneous equation should be added to obtain the general solution of the
inhomeogeneous equation (4a). We shall perform the integration of eq. (7} for
some special cholces of the parameters appearing In eg. (7).

1. (3:0) J‘,'-'-'-Ol d{-_-.ol::!, N‘) &:1) j,*o
The equation of motion becomes

M B - SR g,

In this case from eq. (7) follows:

_ agl-0Y e
4’ It[“_ lln‘—ﬂl Yo (8b)

For Nl-:i the eiectrostatic potential follows, for Np= 2, the potentisi is linear
for \%': 3 the potential is cublc, and so on, If the general solution of the corresponding

homogeneous equatlon is added to eq. (8b) for N‘: = 2, for example, additional
terms of the form ﬁafﬂ?—ﬁ“ﬁ‘?—af 4 appear. g
2 %-O, doﬂ- “f.l ¢=I‘J N"‘*‘ di':ol iﬂ#o

To the equation of motlon

(VEnt)d = 9e FHFR) (9a)

corresponds the Yukawa mlutl:n:
et ™

1 e, § = Opte =) im0, do=0 o= N Tyeh=se=0
The equation

Vo=-go - %Vz) ¥E-t)

(l10a)
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has ac the solutior just the potentlal usually usec as the polential between
two quarks in hadron physics:

Aga El‘ﬁ‘ (%?;\ ; %‘F-_\"o‘\ (10b)

which at small distances simulates the usually commented one gluon exchange ,
while at large distances it assures confinement. But simllar solution foliows also
from eq.(Ba) If the general solution of the homogeneous eq.(10a) is added to
the solution (Bb) of the Inhomogeneous equation.

If eq. (4a) reads :

Voe=-1go +9 3«V“+3V"3 $F-)

to the two terms of the solution farq> of eq.{10b) the term proportional to I?-FD|
is added. We note that in cases whereon the left hand side of eq. (4a) only

one term V"’" appears, with nz= 2, the potential is monotonically rising.

But the potential is not necessarily a monotonic function of the distance, if terms

with different higher order derlvatives and a constant term appear on the left

hanc cide of eq. (4a). We shall present two such cases.

4) Aoz Ol d\='- ‘ b N{_IZ’ di‘ 3"_'.\:?) d::-_-__Bz’ 3=o, 39*@
B=b, 8>0 b>0.
Then the equation:

(V't () VA B YY) ‘1’1::"‘305"@“” ek

3

has the solution:

-3 (otp-a) - e8]
® g (O (11e)
PRl _ - BF-RI)

= =99 -
i e oA N

The two potentials are presented in Fig. |
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Flg. |. The two =curves present the two potentialsﬂ_(!ull line) and
¢_ (dotted line) as a function of |} -“r‘o\ b. We chose %= 0.1,
Whlle?‘ Is perlodll:.¢__ is a monotonic function. o

v

- —4
While q_is a perlodic potential with fits strength decreasing as (\r—?aﬁ 5
the potential #__ is a monotonic function. Both potentials have no singularity at
'.Pa"?o. which js also true for all potentials for which equations without derivatives
of currents appear on the right hand side of eq. (4a).

S. We shall present the solution of eq. (46a) with ,
B#b,b>0,8>0:"

[V () VBBV e = qoSER)
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The solutlons:

b= S Bt tlo- -BHa®ri) 0] )
4= heaam LBEe ST Lt )

are presented In Fig. Z. While P‘_ Is osciiatory with an amplitude decreasing
agai~ as (|7 - T-‘J\. P_is 8 monotonic function.
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Fig. 2. Potentials P, (full line) and §_ (dotted line) from eq. (12b) as a
function of the distance from the point source. We chase %={.‘3

6. Similar behaviour is also displayed by the potential which is the solution of

equation:
a

(vq + bz,vz) CP e -‘joso{?"?;) (13a)
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The potential ls ascilatory

;"
g - P\l
¢- _%——~ i “ it it (13v)
T 17 -To\
anG is presented In Fig. 3.
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Fig. 3. The potential & from eq. (I3b) is presented as a function of the

distance from the source.

4. CONCLUSION

We have seen that Lagranglan densities with higher order derivatives with
respect to fields only, have solutions of the ranhomogeneous equations with no
singularities at the origin. This fact can be very promising for classical and
quantum field theorles. A iong time ago (in :950) Pais and Uhlenbeck in their
paper (3 ) presented a detailed study of the <.assical and quantum fielg theories
with higher order derivatives, and fourteen yezrs later Barut and Mullen added
their work (4) on the same subject. Stlll tre agvantage of such theories Is not
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yet evident and additional work is needed to clarify the convergence, the positive
deflniteness of the free field energy and the causal behaviour of the state
describing a physical system. Even less evident are terms with first and higher
order derivatives of a current on the right hand side of eq. (4a), particularly
because the singular behaviour of the potential at the origin again appears. W=

used them to reproduce the quark interaction (without adding the general solution
of the homogeneous equation), but as yet we have not studied in depth the

meaning of such terms. We would like to point out that terms with higher order
derivatives suggest that confinement js not necessarily absolute. For the special
choice of parameters the potentials behave llke a barrier which allows tunneiling.
One can estimate the shape of the barrier by choosing the parameters of the
potential In such a way that the properties of hadrons will be reproduced. We
determined Lhe two parameters of the potential from example 6 in such a way
that the system cC has approximately the correct spectrum. One then obtains
the decay time for cC as GWN 12700
the life time of the universe. By choosing difierent Lagrangian densities one can
change the barrier. In any case, the periodicity of the barrier remains for the
finite number of higher order derivatives. Such a periodic structure of the

s, which is enormous in comparison with

potential would suggest the crystalline structure of the universe, the meaning of
which should be studied.
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